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Abstract

Purpose – The purpose of this paper is to develop a new local radial basis function collocation
method (LRBFCM) for one-domain solving of the non-linear convection-diffusion equation, as it
appears in mixture continuum formulation of the energy transport in solid-liquid phase change
systems.

Design/methodology/approach – The method is structured on multiquadrics radial basis
functions. The collocation is made locally over a set of overlapping domains of influence and the
time stepping is performed in an explicit way. Only small systems of linear equations with the
dimension of the number of nodes in the domain of influence have to be solved for each node. The
method does not require polygonisation (meshing). The solution is found only on a set of nodes.

Findings – The computational effort grows roughly linearly with the number of the nodes. Results
are compared with the existing steady analytical solutions for one-dimensional convective-diffusive
problem with and without phase change. Regular and randomly displaced node arrangements have
been employed. The solution is compared with the results of the classical finite volume method.
Excellent agreement with analytical solution and reference numerical method has been found.

Practical implications – A realistic two-dimensional non-linear industrial test associated with
direct-chill, continuously cast aluminium alloy slab is presented.

Originality/value – A new meshless method is presented which is simple, efficient, accurate, and
applicable in industrial convective-diffusive solid-liquid phase-change problems with non-linear
material properties.
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1. Introduction
The problems in science and engineering are usually reduced to a set of coupled partial
differential equations (PDEs). It is not easy to obtain their analytical solution,
particularly in non-linear and complex-shaped cases, and discrete approximate
methods have to be employed accordingly. The finite difference method (FDM) (Özisik,
1994), the finite volume method (FVM) (Versteeg and Malalasekera, 1995), the finite
element method (FEM) (Zienkiewicz and Taylor, 2000), and the boundary element
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method (BEM) (Wrobel, 2001) are the most widely used among them at the present.
Despite the powerful features of these methods, there are often substantial difficulties in
applying them to realistic, geometrically complex three-dimensional transient
situations with moving and/or deforming boundaries. A common complication in the
mentioned methods is the need to create a polygonisation, either in the domain and/or on
its boundary. This type of (re)meshing is often the most time consuming part of the
solution process and is far from being fully automated. In the recent years, a new class of
methods is in development, which do not require polygonisation but use only a set of
nodes to approximate the solution. The rapid development of these types of mesh-free
(meshless, polygon-free) methods and their classification is elaborated in the very recent
monographs (Atluri and Shen, 2002; Liu, 2003; Atluri, 2004; Šarler, 2004). A broad class
of mesh-free methods in development today are based on radial basis functions (RBFs)
(Buhmann, 2003). The RBF collocation method (RBFCM) or Kansa (1990) method is the
simplest of them. It is based on the strong formulation of the governing PDE. This
method has been further upgraded to symmetric collocation (Fasshauer, 1997), (Power
and Barraco, 2002), to modified collocation (Chen, 2002) and to indirect collocation
(Mai-Duy and Tran-Cong, 2003). The method has been already used in a broad spectrum
of computational fluid dynamics problems (Šarler, 2005) such as the solution of
Navier-Stokes equations (Mai-Duy and Tran-Cong, 2003) or porous media flow (Šarler
et al., 2004) and the solution of solid-liquid phase change problems (Kovačević et al.,
2003). In contrast to advantages over mesh generation, all the listed methods
unfortunately fail to perform for large problems, because they produce fully populated
matrices, sensitive to the choice of the free parameters in RBFs. One of the possibilities
for mitigating this problem is to employ the domain decomposition (Mai-Duy and
Tran-Cong, 2002). However, the domain decomposition re-introduces some sort of
meshing which is not attractive. The concept of local collocation has been in the context
of RBF-based solution of Poisson equation introduced by Lee et al. (2003). The authors
use for interpolation of the function value in a certain node only data in the
(neighbouring) nodes that fall into domain of influence of this node. The procedure
results in a matrix that is of the same size as the matrix in the original Kansa method,
however it is sparse. The differential quadrature method, that calculates the derivatives
of a function by a weighted linear sum of functional values at its neighbouring nodes
has been structured with the RBFs by Shu et al. (2003). Despite the local properties, the
matrix still has a similar form as in Lee et al. (2003). A parallel development, based on
strong formulation, polynomials instead of RBF and least squares approximation
instead of collocation is in development under name diffuse approximate method
(Nayroles et al., 1991; Sadat and Prax, 1996; Vertnik et al., 2004; Šarler et al., 2005;
Perko, 2005).

In this paper, the local radial basis function collocation method (LRBFCM) is
developed to solve non-linear convective-diffusive transport phenomena problems with
non-linear material properties and phase change, and applied to the one-dimensional
test cases and two-dimensional industrial continuous casting problem. The
developments are based on our experience (Šarler and Vertnik, 2005) in related
solving of the diffusion equation.
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2. Governing equations
Consider a connected fixed domain V with boundary G occupied by a liquid-solid
phase change material described with the temperature dependent density r‘ of the
phase ‘ temperature dependent specific heat at constant pressure c‘, thermal
conductivity k‘, and the specific latent heat of the solid-liquid phase change hm. The
mixture continuum formulation (Bennon and Incropera, 1987) of the enthalpy
conservation for the assumed system is:

›

›t
ðrhÞ þ 7 · ðr~vhÞ ¼ 7 · ðk7TÞ þ 7 · r~vh2 f V

S rS~vShS 2 f V
LrL~vLhL

� �
ð1Þ

with mixture density and thermal conductivity defined as:

r ¼ f V
S rS þ f V

LrL ð2Þ

k ¼ f V
S kS þ f V

LkL ð3Þ

where f V
‘ represents the volume fraction of the phase ‘. The liquid volume fraction f V

L
is assumed to vary from 0 to 1 between solidus TS and liquidus temperature TL.
Mixture velocity is defined as:

~v ¼
f V

S rS~vS þ f V
LrL~vL

� �
r

ð4Þ

and mixture enthalpy is defined as:

h ¼ f V
S hS þ f V

LhL ð5Þ

The constitutive temperature-enthalpy relationships are:

hS ¼

Z T

Tref

cS dT ð6Þ

hL ¼ hSðTÞ þ

Z T

TS

ðcL 2 cSÞ dT þ hm ð7Þ

with Tref standing for the reference temperature. Thermal conductivity and specific
heat of the phases can arbitrarily depend on temperature. We seek for mixture
temperature at time t0 þ Dt by assuming known initial temperature, velocity field, and
boundary conditions at time t0. The initial value of the temperature T(p,t) at a point
with position vector p and time t0 is defined through the known function T0:

Tðp; tÞ ¼ T0ðpÞ; p [ Vþ G ð8Þ

The boundary G is divided into not necessarily connected parts G ¼ GD < GN < GR

with Dirichlet, Neumann and Robin type boundary conditions, respectively. At the
boundary point p with normal nG and time t0 # t # t0 þ Dt; these boundary
conditions are defined through known functions TD

G ; T
N
G ; T

R
G; T

R
Gref :
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T ¼ TD
G ; p [ GD ð9Þ

›

›nG
T ¼ TN

G ; p [ GN ð10Þ

›

›nG
T ¼ TR

G T 2 TR
Gref

� �
; p [ GR ð11Þ

3. Solution procedure
3.1 Meshless representation of temperature and its spatial derivatives
The representation of temperature over a set of lN (in general) non-equally spaced
nodes lpn; n ¼ 1; 2; . . . ;l N is made in the following way:

TðpÞ <
XlK
k¼1

lckðpÞlak ð12Þ

where lck stands for the shape functions, lak for the coefficients of the shape functions,
and lK represents the number of the shape functions. The left lower index on entries of
expression (12) represents the domain of influence (subdomain) lv on which the
coefficients lak are determined. The domains of influence lv can in general be
contiguous (overlapping) or non-contiguous (non-overlapping). Each of the domains of
influence lv includes lN nodes of which lNV can in general be in the domain and lNG

on the boundary, i.e. lN ¼l NV þl NG: The total number of all nodes pn is equal
N ¼ NV þ NG of which NG are located on the boundary and NV are located in the
domain. The domain of influence of the node lp is defined with the nodes having the
nearest lN 2 1 distances to the node lp. The five nodded lN ¼ 5 and seven nodded
supports lN ¼ 7 are used in this paper. The coefficients can be calculated from the
subdomain nodes at least in two distinct ways. The first way is collocation
(interpolation) and the second way is approximation by the least squares method. Only
the simpler collocation version for calculation of the coefficients is considered in this
text. Let us assume the known function values lTn in the nodes lpn of the subdomain

lv: The collocation implies:

TðlpnÞ ¼
XlN
k¼1

lckðlpnÞlak ð13Þ

For the coefficients to be computable, the number of the shape functions has to match
the number of the collocation points lK ¼l N ; and the collocation matrix has to be
non-singular. The system of equations (13) can be written in a matrix-vector notation:

lcla ¼ lT; lckn ¼ lckðlpnÞ;l Tn ¼ TðlpnÞ ð14Þ

The coefficients la can be computed by inverting the system (14):

la ¼ lc
21
l T ð15Þ
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By taking into account the expressions for the calculation of the coefficients la; the
collocation representation of temperature T(p) on subdomain lv can be expressed as:

TðpÞ <
XlN
k¼1

lckðpÞ
XlN
n¼1

c21
kn l

Tn: ð16Þ

Let us introduce a two dimensional Cartesian coordinate system with base vectors
i6; 6 ¼ x; y and coordinates p6; 6 ¼ x; y;, i.e. p ¼ ixpx þ iypy: The first partial spatial
derivatives of T(p) on subdomain lv can be expressed as:

›

›p6
TðpÞ <

XlN
k¼1

›

›p6
lckðpÞ

XlN
n¼1

lc
21
kn l

Tn; 6 ¼ x; y ð17Þ

The second partial spatial derivatives of T(p) on subdomain lv can be expressed as:

›2

›p6pj
TðpÞ <

XlN
k¼1

›2

›p6pj
lckðpÞ

XlN
n¼1

lc
21
kn l

Tn; 6; j ¼ x; y ð18Þ

The RBFs, such as multiquadrics, can be used for the shape functions:

lckðpÞ ¼ l r
2
kðpÞ þ c2

l r
2
0

� �1=2
; l r

2
k ¼ ðp2l pkÞ · ðp2l pkÞ ð19Þ

where c represents the dimensionless shape parameter. The scaling parameter l r
2
0 is set

to the maximum nodal distance in the domain of influence:

l r
2
0 ¼ max l r

2
mðlpnÞ; m; n ¼ 1; 2; . . . ;l N ð20Þ

The explicit values of the involved first and second derivatives of ck(p) are:

›

›px
lckðpÞ ¼

px 2l pkx

lr
2
k þ c 2

l r
2
0

� �1=2
ð21Þ

›

›py
lckðpÞ ¼

py 2l pky

lr
2
k þ c2

l r
2
0

� �1=2
ð22Þ

›2

›p2
x

lckðpÞ ¼
ð py 2l pkyÞ

2 þ c2
l r

2
0

l r
2
k þ c 2

l r
2
0

� �3=2
ð23Þ

›2

›p2
y

lckðpÞ ¼
ð px 2l pkxÞ

2 þ c 2
l r

2
0

l r
2
k þ c 2

l r
2
0

� �3=2
ð24Þ
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›2

›pxpy
lckðpÞ ¼

›2

›pypx
lckðpÞ ¼ 2

ð px 2l pkxÞð py 2l pkyÞ

l r
2
k þ c 2

l r
2
0

� �3=2
ð25Þ

3.2 Meshless solution of the convection-diffusion equation
What follows elaborates the solution of the convection-diffusion equation (1), subject to
the initial condition (8), and the boundary conditions (9)-(11). The temperature can be
iteratively expressed from the enthalpy as:

h ¼ hþ
dh

dT
ðTÞðT 2 TÞ ð26Þ

where h represents the known value from previous iteration. The convection-diffusion
equation can be transformed into the following expression by taking into account the
explicit time discretization and iterative enthalpy-temperature relationship:

›ðrhÞ

›t
<

r0c0h2 r0c0h0

Dt
¼

r0c0 hþ dh
dT ðT 2 TÞ

� �
2 r0c0h0

Dt

¼ 27 · ðc0v0h0Þ þ 7 · ðk07T0Þ

ð27Þ

The unknown function value Tl in domain node pl can be calculated as:

Tl ¼
h0l þ

dh
dTl

Tl 2 hl þ
Dt

r 0l c0l
½27 · ðc0l v0lh0lÞ þ 7k0l ·7T0l þ k0l ·72T0l�

n o
ðdh=dTlÞ

ð28Þ

The handling of the governing equation belongs to the class of fixed-grid or
one-domain techniques for phase change problems (Voller et al., 1990). The explicit
calculation of expression (28) in 2D is:

Tl ¼ h0lþ
dh

dTl
Tl2hlþ

Dt

r0l c0l

XlN
k¼1

›

›pxl
ckðp lÞ

XlN
n¼1

lc
21
kn l

ðc0v0xh0Þn

"(

þ
XlN
k¼1

›

›py
lckðp lÞ

XlN
n¼1

lc
21
kn l

ðc0v0xh0Þn

#

þ
Dt

r0l c0l

XlN
k¼1

›

›px
lckðp lÞ

XlN
n¼1

lc
21
kn l

K0n

" #
·
XlN
k¼1

›

›px
lckðp lÞ

XlN
n¼1

lc
21
kn l

T0n

" #

þ
Dt

r0l c0l

XlN
k¼1

›

›py
lckðp lÞ

XlN
n¼1

lc
21
kn l

K0n

" #
·
XlN
k¼1

›

›py
lckðp lÞ

XlN
n¼1

lc
21
kn l

T0n

" #

þ
Dtk0l

r0l c0l

XlN
n¼1

›2

›p2
x

lckðp lÞ
XlN
n¼1

lc
21
kn l

T0nþ
XlN
n¼1

›2

›p2
y

lckðp lÞ
XlN
n¼1

lc
21
kn l

T0n

" #)�
dh

dTl
ð29Þ
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where the formulas (17) and (18) have been employed. The complete solution procedure
follows the below defined steps 1-4.

(1) First, the initial conditions are set in the domain and boundary nodes and the
required derivatives are calculated from the known nodal values.

(2) The equation (29) is used to calculate the new values of the variable lTn at time
t0 þ Dt in the domain nodes.

(3) What follows in the steps 3 and 4 defines variable lTn at time t0 þ Dt in the
Dirichlet, Neumann, and Robin boundary nodes. For this purpose, in the step 3,
the coefficients la have to be determined from the new values in the domain and
from the information on the boundary conditions. Let us introduce domain,
Dirichlet, Neumann, and Robin boundary indicators for this purpose. These
indicators are defined as:

YVn ¼

1;pn [ V

0;pn � V

8<
: ; YD

Gn ¼
1;pn [ GD

0;pn � GD

8<
: ;

YN
Gn ¼

1;pn [ GN

0;pn � GN

8<
: ; YR

Gn ¼
1;pn [ GR

0;pn � GR

8<
:

ð30Þ

The coefficients la are calculated from the system of linear equations:

XlN
k¼1

lYVn lckðlpnÞlak þ
XlN
k¼1

lY
D
Gn lckðlpnÞlak þ

XlN
k¼1

lY
N
Gn

›

›nG
lckðlpnÞlak

þ
XlN
k¼1

lY
R
Gn

›

›nG
lckðlpnÞlak ¼ lYVn lTn þ lY

D
Gn lT

D
n þ lY

N
Gn lT

N
n

þ lY
R
Gn lT

R
Gn

XlN
k¼1

lckðlpnÞlak 2 lT
R
Gref n

 !
ð31Þ

The system (31) can be written in a compact form:

lCla ¼ lb ð32Þ

with the following system matrix entries:

lCnk ¼ lYVn lckðlpnÞ þ lY
D
Gn lckðlpnÞ

þl Y
N
Gn

›

›nG
lckðlpnÞ þl Y

R
Gn

›

›nG
lckðlpnÞ2 lT

R
Gn

XlN
k¼1

lckðlpnÞ

" #
ð33Þ

and with the following explicit form of the augmented right hand side vector:

lbn ¼l YVnTn þl Y
D
GnT

D
Gn þl Y

N
GnT

N
Gn 2l Y

R
GnlT

R
GnlT

R
Gref n ð34Þ

(4) The unknown boundary values are set from equation (13).
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The under-relaxation might be required in the general case for all the
computational nodes:

pn; n ¼ 1; 2; . . . ;N Tn ¼ Tn þ 1ðTn 2 TnÞ ð35Þ

with 1 standing for the under-relaxation factor. The iterations over one
time-step are completed when the iteration criterion:

maxjTn 2 T0nj # T itr ð36Þ

is satisfied in all computational nodes. The steady-state is achieved when the
criterion:

maxjTn 2 T0nj # Tste ð37Þ

is met. The parameter Tste is defined as the steady-state convergence margin. In
case the steady-state criterion is achieved or the time of calculation exceeds the
foreseen time of interest, the calculation is stopped.

4. Numerical examples
4.1 Convective-diffusive problem with different material properties of the phases
To the best of the authors’ knowledge, the exact closed form solution for checking
convective-diffusive solid-liquid phase change problems appears to exist only for a
relatively simple one-dimensional steady-state class of problems with uniform velocity
field. The solution used by Pardo and Weckman (1986) for checking their one-domain
FEM-based numerical method belongs to this class of problems. Pardo and Weckman’s
solution for equal and constant thermal properties of the phases has been generalized
by Šarler and Kuhn (1998) to cope with the generally different and constant thermal
properties of the solid k0S, c0S and liquid k0L, c0L phase. The extended analytical
solution is particularly useful because it allows one to check the proper response of the
numerical method regarding the temperature dependence of the material properties.
The respective test case is defined as follows: The domain V is described by the
Cartesian coordinates p2x , px , pþx and p2y , py , pþy : Because the one-dimensional
problem is solved in two dimensions, the transversal length pþy 2 p2y becomes a free
parameter. The boundary conditions at p2x and at pþx are of the Dirichlet type with
uniform temperatures TG ¼ T2

G and TG ¼ Tþ
G : Thermal insulation boundary

conditions of the Neumann type are assumed at the boundaries p2y and pþy : The
material moves with the constant uniform velocity v ¼ vS ¼ vL with components
vx ¼ v0 and vy ¼ 0 m=s: The boundary temperatures and the isothermal melting
temperature are related by TG2 . TM . TGþ : The liquid phase thus occupies the
domain between p2x and the interphase boundary at pMx, and the solid phase the
domain between pMx and pþx : The corresponding exact temperature distribution in
phase ‘ has been found (Šarler and Kuhn 1998) to be:

T P ð px; pyÞ ¼ 2
aP

vx
exp

vx

aP

px þ AP

� 	
þ BP ð38Þ

aP ¼
k0P

r0cp0P
; ‘ ¼ S;L ð39Þ

with aP denoting the thermal diffusivity of the phase ‘; the four constants are:
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AS ¼ log

vx
aS
ðTM 2 TGþÞ

exp vx
aS
pþx

� �
2 exp vx

aS
pMx

� � ; ð40Þ

AL ¼ log

vx
aL
ðTM 2 TG2 Þ

exp vx
aL
p2x

� �
2 exp vx

aL
pMx

� � ; ð41Þ

BP ¼ TM þ
aP

vx
AP exp

vx

aP

pMx

� 	
; ‘ ¼ S;L ð42Þ

The position of the interphase boundary is determined from the transcendental
equation:

2r0hMvx ¼ 2kL
›

›px
T Lð pMx; pyÞ þ kS

›

›px
T Sð pMx; pyÞ ð43Þ

It is in present paper solved by the simple bisection.

4.2 Space discretization sensitivity for monophasic material
The method is first tested with constant unit thermal properties and monophasic
material, i.e. hM ¼ 0J=ðkg KÞ: The computations are done with uniform domain
discretizations of the type N 0 £ 3; with N ¼ 3 £ N 2 4; NG ¼ 2 £ ðN 2 2Þ þ 2 and
NV ¼ N 2 2; defined on a strip-shaped domains with longitudinal coordinates p2x ¼
0 m; pþx ¼ 1 m; and transversal coordinates p^y ¼ ^1:0 m=ðN 0 2 1Þ: The schematics of
21 £ 3 discretization is shown in Figure 1. The steady-state solution is reached through a
transient from the initial uniform temperature T0 ¼ T2

G and a jump of the boundary
conditions at p2x from T2

G ¼ 0 K to Tþ
G ¼ 1 K for t . t0 and stopped through the steady

state criterion (37). The steady-state criterion used in all calculations in this paper is
Tste ¼ 1027 K; the iteration criterion T itr ¼ 1028 K and the underrelaxation 1 ¼ 0:02:
The steady state is reached with time-step Dt ¼ 1025 s: The Péclet Pe and Stefan Ste
numbers are, in the following steady-state examples of Section 4, defined as:

Figure 1.
Discretization schematics

21 £ 3 for solving the
quasi-one-dimensional

convective diffusive
problem
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Ste ¼
cp0 T2

G 2 Tþ
G

� �
hM

ð44Þ

Pe ¼
r0cp0vx pþx 2 p2x

� �
k0

ð45Þ

The maximum absolute temperature error Tmax and the average absolute temperature
error Tavg of the numerical solution at time t are defined as:

Tmax ¼ maxjTðpn; tÞ2 Tanaðpn; tÞj; n ¼ 1; 2; . . . ;N ð46Þ

Tavg ¼
XN
n¼1

1

N
jTðpn; tÞ2 Tanaðpn; tÞj; n ¼ 1; 2; . . .N ð47Þ

The maximum relative nodal temperature and interphase position errors are calculated
from:

gmaxð%Þ ¼
signðgðpn; tÞ2 ganaðpn; tÞÞ

ganaðpn; tÞ


 �
max

gðpn; tÞ2 ganaðpn; tÞÞ

ganaðpn; tÞ

� 	����
���� £ 100%;

n ¼ 1; 2; . . . ;N

ð48Þ

where T and Tana stand for numerical and analytical solution. g stands for temperature
or interphase position. The chosen error measures have been made compatible with the
studies of Dalhuijsen and Segal (1986), Pardo and Weckman (1986) and Šarler and Kuhn
(1998).

All RBFCM introduce some sort of a shape parameter c. The choice of the optimum
value of this parameter is still an unresolved problem, and the optimum value is
usually at the present state-of-the-art found using numerical experiments. The shape
parameter c is considered constant and the same for all gridpoints. Since, the scaling
cr0 is used in present paper, the scaled shape parameter differs from subregion to
subregion in general. Some authors (Mai-Dui and Tranh-Cong, 2001) claim that the
shape parameter is related to the typical grid distance. Other researchers (Zhang et al.,
2000) did not find any relation, and claim simply that the optimum shape parameter is
problem dependent. Very recently Wang and Liu (2002) analysed the extended
multiquadric with the exponent being shape parameter as well. The authors concluded
that by proper fixing of both parameters the solution becomes independent on the node
density, node distribution and problem. Lee et al. (2003) found that the results are less
sensitive to the choice of the free parameter in the local collocation method as in the
global ones. Our investigation in Table I shows that the results are improving with the
growth of the free parameter from 1 to 32 for both fine grids used 101 £ 3; 201 £ 3; and
are optimal at 16 for grid 51 £ 3:
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It is also evident from Table I that the method converges with finer space
discretization. From Table II and from Figure 2(a)-(c) one can conclude that the error
grows with higher Péclet number.

4.3 Space discretization sensitivity for phase-change material
The method is tested next with the constant unit phase-change material. The
isothermal melting temperature TM ¼ 0:950 K is, in the calculations, approximated by
a narrow temperature range TS ¼ 0:945 K; TL ¼ 0:955 K and linear variation of the
liquid fraction over this temperature interval. The same steady state approaching
transient is made as in the previous monophasic example. Figure 3 shows the
sensitivity of the method with respect to Péclet number, and Figure 4 shows the
sensitivity of the method with respect to Stefan number. Related numerical data are
given in Tables III and IV. The fact that the temperature accuracy degrades with lower
Stefan numbers and higher Péclet numbers is a common expected feature of all
one-domain methods. All interphase position errors have been evaluated at py ¼ 0 m in
this paper. The position of the interphase boundary is consistently underpredicted in
cases with constant material properties of phases – a fact that compares well with the
studies by Pardo and Weckman (1986) and Šarler and Kuhn (1998).

C Discretisation cr0 Tavg(K) Tmax(K)

1.0 51 £ 3 0.04 0.765300 0.98220000
1.0 101 £ 3 0.02 0.880900 0.99970000
1.0 201 £ 3 0.01 0.920500 0.99990000
2.0 51 £ 3 0.08 0.247900 0.41920000
2.0 101 £ 3 0.04 0.586300 0.82590000
2.0 201 £ 3 0.02 0.823500 0.99450000
4.0 51 £ 3 0.16 0.021349 0.03808800
4.0 101 £ 3 0.08 0.084033 0.14730000
4.0 201 £ 3 0.04 0.277900 0.45900000
8.0 51 £ 3 0.32 0.001278 0.00321820
8.0 101 £ 3 0.16 0.005665 0.01004100
8.0 201 £ 3 0.08 0.023036 0.04078300

16.0 51 £ 3 0.64 0.000633 0.00475410
16.0 101 £ 3 0.32 0.000326 0.00076631
16.0 201 £ 3 0.16 0.001448 0.00256500
32.0 51 £ 3 1.28 0.000640 0.00485680
32.0 101 £ 3 0.64 0.000155 0.00117190
32.0 201 £ 3 0.32 0.000084 0.00017138

Table I.
Monophasic material.

Influence of the
multiquadric shape

parameter on solution
Pe ¼ 20:0 at three

discretizations

Pe Tavg(K) Tmax(K)

0 0.000143 0.000224
10 0.000054 0.000202
20 0.000155 0.001172
30 0.000245 0.002734
40 0.000329 0.004864
50 0.000412 0.007854

Table II.
Monophasic material.

Sensitivity of the results
with respect to Péclet

number at discretisation
101 £ 3 and the scaled

multiquadrics free
parameter c · r0 ¼ 0:64 m
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Table V shows a comparison of the maximum relative temperature errors of our
method (LRBFCM) with the reference FEM calculations (Pardo and Weckman, 1986)
and dual reciprocity boundary element method (DRBEM) calculations (Šarler and
Kuhn, 1998) (Figures 5 and 6)) Table VI. The disrcetisation in FEM, that corresponds to
LRBFCM discretisation N 0 £ 3 is equal to N 0 2 1 isoparametric hexahedral linear finite
elements. The related discretisation in DRBEM is equal to 2 £ ðN 0 2 1Þ þ 4 constant
boundary elements and N 0 2 1 domain points. The present method gives comparable
results in terms of overall temperature accuracy and interphase boundary position
error at the compared node densities. The convergence of our method in this
comparison exercise is shown in Figure 7(a)-(c).

Figure 2.
Monophasic material
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4.4 Space discretization sensitivity for different material properties of the phases
The thermal conductivities of the solid and liquid phases at the melting point or in the
phase-change interval usually do not differ by more than 100 per cent in pure metals or
alloys. Similarly, the related alloy specific heats do not differ by more than 25 per cent
(Brandes and Brook, 1992). In the present study of the influence of the different
material properties on the results of the present numerical method, the cases with three
times greater or lower thermal conductivity and cases with two times lower or greater
specific heat have been recalculated, which most probably covers all realistic
situations. The results of these calculations are shown in Figure 6(a)-(d) and Table VII.

Figure 3.
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Figure 4.

Pe Tavg(K) Tmax(K) pMx(m) Perr x(m)

0.5 0.000206 0.000635 0.089150 20.000329
1.0 0.000977 0.002406 0.200251 20.000161
2.0 0.000908 0.002528 0.513854 20.003082
4.0 0.001064 0.004949 0.749926 20.000662

Table III.
Sensitivity of the results
with respect to Péclet
number at discretisation
101 £ 3; Ste ¼ 2:0
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The accuracy of the results does not principally differ from the accuracy of the cases
with constant material properties.

4.5 Direct-chill casting problem
Direct-chill (DC) casting is currently the most common (Altenpohl, 1998)
semi-continuous casting practice in production of aluminum alloys. The process
involves molten metal being feed through a bottomless water-cooled mould where it is
sufficiently solidified around the outer surface that it takes the shape of the mould and
acquires sufficient mechanical strength to contain the molten core at the center. As the
strand emerges from the mould, water impinges directly from the mould onto the
surface (DC), falls over the cast surface and completes the solidification. This section
elaborates the solution of a simplified model of the DC casting process by the
developed LRBFCM in two dimensions (Figures 8 and 9). The steady state solution is
shown in this paper, approached by a false transient calculation using a fixed time-step
of 0.5 s. The enthalpy reference temperature Tref has been set to 0 K. The following
simplified DC casting case is considered. The computational domain is a rectangle
(coordinates px, py) 21:25 m # py # 0 m; 0 m # px # 0:25 m: The boundary
conditions on the top at py ¼ 0 m are of the Dirichlet type with TD

G ¼ 980 K; and the
boundary conditions at the bottom at py ¼ 21:25 m are of the Neumann type with
FN
G ¼ 0 W=m2: The boundary conditions at the outer surface are of the Robin type with

TR
Gref ¼ 298 K: The heat transfer coefficients between 0 m # py # 20:01 m;20:0 m #

py # 20:06 m; 20:06 m # py # 20:1 m; and 20:1 m # py # 21:25 m; are TR
G ¼

0 W=m2K; TR
G ¼ 3; 000 W=m2K; TR

G ¼ 150 W=m2K; and TR
G ¼ 4; 000 W=m2K;,

respectively. Material properties correspond to a simplified Al4.5%Cu alloy as
already used in Šarler and Mencinger (1999) and Šarler et al. (2005): rS ¼ rL ¼
2; 982 kg=m3; kS ¼ 120:7 W=m K; kL ¼ 57:3 W=m K; k ¼ f V

S kS þ f V
LkL; cS ¼

1; 032 W=m K; cL ¼ 1; 179 W=m K; hM ¼ 348:2 kJ=kg K; TS ¼ 775 K; TL ¼ 911 K:
The liquid fraction increases linearly between TS and TL. The initial conditions
are described by a linear variation of the temperature with the px coordinate from 298 K

Ste Tavg(K) Tmax(K) pMx(m) Perr x (m)

0.5 0.003857 0.012703 0.810560 20.000543
1.0 0.001407 0.004705 0.671921 20.001538
2.0 0.000908 0.002528 0.513854 20.003082
4.0 0.000742 0.001291 0.335296 20.002565

Table IV.
Sensitivity of the results

with respect to Stefan
number at discretisation

101 £ 3; Pe ¼ 2:0

Grid 21 £ 3 ðc · r0 ¼ 1:6Þ 41 £ 3 ðc · r0 ¼ 0:8Þ 81 £ 3 ðc · r0 ¼ 0:4Þ

LRBFCM Tmax (per cent) 2.57 1.24 0.41
DRBEM Tmax (per cent) 1.21 0.81 0.41
FEM Tmax (per cent) 2.15 1.06 0.46

Note: Comparison of the maximum nodal temperature error of the present method (LRBFCM) with
results of the FEM by Pardo and Weckman (1996) and the dual reciprocity boundary element method
by Šarler and Kuhn (1998). Pe ¼ 2:0 1=Ste ¼ 0:7 Table V.
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at the bottom to 980 K at the top of the cylinder. The uniform casting velocity is
vSy ¼ vLy ¼ 20:000633 m=s; vSx ¼ vLx ¼ 0 m=s: The solution has been obtained on an
equidistant 27 £ 127 node arrangement as well as randomly displaced node
arrangement. A schematic of the uniform node arrangement 27 £ 127 is shown in
Figure 7 (left). A non-uniform node arrangement is generated from the uniform node
arrangement through transformation:

pn6ðnon–uniformÞ ¼ pn6ðuniformÞ þ crandomdrmin pn6ðuniformÞ; 6 ¼ x; y ð49Þ

Figure 5.
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Figure 6.

Grid 21 £ 3 ðc · r0 ¼ 1:6Þ 41 £ 3 ðc · r0 ¼ 0:8Þ 81 £ 3 ðc · r0 ¼ 0:4Þ

LRBFCM pmax x(per cent) 21.68 21.33 20.94
DRBEM pmax x(per cent) 21.51 20.77 20.46
FEM pmax x(per cent) 21.62 20.82 20.48

Note: Comparison of the interphase position error of the present method with results of the FEM by
Pardo and Weckman (1986) and the dual reciprocity boundary element method (DRBEM) by Šarler
and Kuhn (1998). Pe ¼ 2:0; 1=Ste ¼ 0:7; pMx ¼ 0:598739 m Table VI.
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where crandom represents a random number 21 # crandom # þ1; d represents a
displacement factor (in this work fixed to 0.25), and rmin the minimum distance
between the two nodes in the uniform node arrangement. Only domain nodes have
been subject to this transformation (Figure 7 (right)). In the uniform-grid and
non-uniform grid calculations the shape parameter c ¼ 16:0 is used. The uniform grid
has been calculated with a five-noded support and the non-uniform grid with the
seven-noded support. The computational effort is approximately two, five times
greater as with the FVM method. Figure 10 shows comparison between present results

Figure 7.
Left: 27 £ 127 uniform
node arrangement. Right:
27 £ 127 non-uniform
randomly displaced node
arrangement. The upper
right rectangle
schematically represents
the mold

cpS0 cpL0 kS0 kL0 Tavg (K) Tmax (K) PMx (m) perr x (m)

1.0 1.0 1.0 1.0 0.000978 0.002406 0.200251 20.000161
2.0 1.0 1.0 1.0 0.001478 0.003105 0.331708 20.001201
1.0 2.0 1.0 1.0 0.000292 0.001009 0.210841 20.000516
1.0 1.0 3.0 1.0 0.001430 0.006821 0.025634 0.001914
1.0 1.0 1.0 3.0 0.005002 0.012371 0.325451 20.003810

Table VII.
Sensitivity of the results
with respect to different
material properties of the
phases. Discretisation
101 £ 3; Pe ¼ 1:0;
Ste ¼ 2:0
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and FVM. There is practically no visual difference. Figure 11 shows the absolute error
between the two solutions. A similar comparison has been performed also with the
DAM and FVM in Šarler et al. (2005) with the maximum difference between DAM and
FVM about 4 times bigger as in the present method. For the solution of the presented
problem with DAM (Šarler et al., 2005), we need six polynomial basis and at least nine
neighbouring points in support which makes this meshless approach also less efficient
as the present one.

5. Conclusions
This paper represents a new (very) simple mesh-free formulation for solving a wide
range of convection-diffusion problems with phase change. The time marching is
performed in a simple explicit way. The governing equation is solved in its strong
form. No polygonisation and integrations are needed. The developed method is almost
independent of the problem dimension. The complicated geometry can easily be coped
with. The method appears efficient, because it does not require a solution of a large
system of equations like the original Kansa method. Instead, small systems of linear
equations have to be solved in each time-step for each node and associated domain of
influence, probably representing the most natural and automatic domain
decomposition. This feature of the developed method represents its principal
difference from the other related local approaches, where the resultant matrix is large
and sparse (Lee et al., 2003; Shu et al., 2003; Tolstykh and Shirobokov, 2005). The
method is simple to learn and simple to code. The method can cope with very large

Figure 8.
Absolute difference

between the LRBFCM
solutions calculated in

uniform and non-uniform
node arrangements
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problems since the computational effort grows approximately linear with the number
of the nodes. The developments in this paper can be straightforwardly extended to
tackle other types of PDEs. When compared with other mesh-reduction or -free
methods used in the context of the represented industrial example, one can conclude:
The method can cope with physically more involved situations than the front tracking
BEM (Fic et al., 2000), where the calculations are limited to a uniform velocity field,
constant material properties of the phases, and isothermal phase-change. When
compared to DRBEM (Šarler and Kuhn, 1998), the method does not need any
integrations and boundary polygonisation. The method appears much more efficient
as the RBFCM (Kovačević et al., 2003), because it does not require a solution of the
large systems of equations. Instead, small (5 £ 5 and 7 £ 7 used in present paper)
systems of linear equations have to be solved in each time-step for each node. Our
ongoing research is focused on the extension of the method to implicit time-marching
which might overcome the inherent stability problem of the explicit approach and the
use of the method in coupled transport phenomena context.

Figure 9.
LRBFCM results
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Figure 10.
Calculated temperature
distribution in the slab.

27 £ 127 node
arrangement

Figure 11.
Absolute difference

between the FVM and the
LRBFCM solutions
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Özisik, M.N. (1994), Finite Difference Methods in Heat Transfer, CRC Press, Boca Raton, FL.

HFF
16,5

638



Pardo, E. and Weckman, D.C. (1986), “A fixed grid finite element technique for modelling phase
change in steady-state conduction-advection problems”, International Journal for
Numerical Methods in Engineering, Vol. 23, pp. 1807-29.

Perko, J. (2005), “Modelling of transport phenomena by the diffuse approximate method”,
doctoral dissertation, School of Applied Sciences, Nova Gorica Polytechnic, Nova Gorica.

Power, H. and Barraco, W.A. (2002), “Comparison analysis between unsymmetric and symmetric
RBFCMs for the numerical solution of PDE’s”, Computers and Mathematics with
Applications, Vol. 43, pp. 551-83.

Sadat, H. and Prax, C. (1996), “Application of the diffuse approximation for solving fluid flow and
heat transfer problems”, International Journal of Heat and Mass Transfer, Vol. 39,
pp. 214-8.
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